

CrowdOS Algorithm Library

Existing Algorithms in CrowdOS

There are four task allocation algorithms currently implemented in the CrowdOS

kernel: T_Most, PT_Most, T_Random, and GGA_I. The specific code can be found in

the algorithms section of the kernel code:

CrowdOS\kernel\src\main\java\cn\crowdos\kernel\algorithms

The default algorithm used in the kernel is "DefaultAlgo", which is a simple default

implementation. To use the four classic task allocation algorithms mentioned above,

the "algoSelect" function needs to be used for algorithm selection.

Interfaces in the Algorithm Library

The algorithms package in the kernel defines the crowd-sourcing related algorithms

used in the system. Currently, interfaces for task allocation, task recommendation,

and participant selection algorithms are provided, which are TaskAssignmentAlgo,

TaskRecommendationAlgo, and ParticipantSelectionAlgo respectively. The

algorithms package uses the factory pattern, with each algorithm factory producing a

specific type of algorithm implementation. Each algorithm factory provides the above

three algorithms.

The AlgoFactory interface defines all the algorithms used in the kernel. Currently, it

defines three functions:

Return Value Prototype Meaning

TaskAssignmentAl

go

getTaskAssignmentAl

go();

Return the task assignment

algorithm

TaskRecommenda

tionAlgo

getTaskRecommendat

ionAlgo();

Return the task recommendation

list algorithm

ParticipantSelectio

nAlgo

getParticipantSelectio

nAlgo();

Return the participant selection

algorithm

The definitions of TaskAssignmentAlgo, TaskRecommendationAlgo, and

ParticipantSelectionAlgo are similar. Taking TaskAssignmentAlgo as an example, the

TaskAssignmentAlgo interface defines the functional interface of the task allocation

algorithm, which includes single task allocation and multiple task allocation:

Return Value Prototype Meaning

List<Participant> getTaskAssignmentScheme(Ta

sk task)

Get the list of participants

assigned to a specific

task.

List<List<Participa

nt>>

getTaskAssignmentScheme(Lis

t<Task> taskList)

Return a list of lists of

participants assigned to

each task in the input list.

Each sublist corresponds

to one task.

Integration of Algorithms

The algorithms package in the kernel uses the factory pattern, with each factory

producing a specific type of algorithm implementation. Therefore, when integrating

new algorithms into the kernel, a new algorithm factory needs to be created. The

AlgoFactoryAdapter is provided in the kernel, which provides basic implementations

of task allocation, task recommendation, and participant selection. Therefore, the

newly created algorithm factory can be implemented by inheriting from

AlgoFactoryAdapter. Taking the PT_Most task allocation algorithm as an example,

the system resources at this time are obtained first:

Then, the task allocation algorithm is overridden. There are single task allocation

algorithms and multiple task allocation algorithms. When adding a new algorithm, the

system may provide an implementation of the multiple task allocation algorithm, but

not the single task allocation algorithm. Therefore, when participants integrate a new

algorithm, they must provide at least the implementation of single task allocation.

Taking the single task allocation as an example, the resources required from the

resource pool are obtained:

Then, the parameters required by the new algorithm are calculated in advance:

Then, the prepared algorithm instance is created, and the task allocation results are

obtained with the input parameters:

Finally, register the newly integrated algorithm in the kernel to complete the algorithm

integration.

Using Algorithms in the Kernel

To use the newly added algorithm in the kernel, the newly added algorithm factory

needs to be registered during the initialization of the kernel and given a unique and

representative name. In this way, the algorithm factory is added to the system

resources:

The algorithm selection function "algoSelect(String name)" is provided in the kernel,

which can be used to select the desired algorithm. It selects the algorithm factory in

the system scheduler and then selects the desired algorithm

